Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures

نویسندگان

  • K. Bertoldi
  • M. C. Boyce
  • S. Deschanel
  • S. M. Prange
  • T. Mullin
چکیده

Recently, novel and uniform deformation-induced pattern transformations have been found in periodic elastomeric cellular solids upon reaching a critical value of applied load [Mullin, T., Deschanel, S., Bertoldi, K., Boyce, M.C., 2007. Pattern transformation triggered by deformation. Phys. Rev. Lett. 99, 084301; Boyce, M.C., Prange, S.M., Bertoldi, K., Deschanel, S., Mullin, T., 2008. Mechanics of periodic elastomeric structures. In: Boukamel, Laiarinandrasana, Meo, Verron (Eds.), Constitutive Models for Rubber, vol. V. Taylor & Francis Group, London, pp. 3–7]. Here, the mechanics of the deformation behavior of several periodically patterned two-dimensional elastomeric sheets are investigated experimentally and through numerical simulation. Square and oblique lattices of circular voids and rectangular lattices of elliptical voids are studied. The numerical results clearly show the mechanism of the pattern switch for each microstructure to be a form of local elastic instability, giving reversible and repeatable transformation events as confirmed by experiments. Post-deformation transformation is observed to accentuate the new pattern and is found to be elastic and to occur at nearly constant stress, resulting in a superelastic behavior. The deformation-induced transformations have been physically realized on structures constructed at the millimeter length scale. This behavior should also persist at the micro and nano length scales, providing opportunities for transformative photonic and phononic crystals which can switch in a controlled manner and also exploiting the phenomenon to imprint complex patterns. r 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern transformation triggered by deformation.

Periodic elastomeric cellular solids are subjected to uniaxial compression and novel transformations of the patterned structures are found upon reaching a critical value of applied load. The results of a numerical investigation reveal that the pattern switch is triggered by a reversible elastic instability. Excellent quantitative agreement between numerical and experimental results is found and...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures

Three-dimensional periodic structures have many applications in acoustics and their properties are strongly related to structural details. Here we demonstrate through simulations the ability to tune the phononic band gaps of 3D periodic elastomeric structures using deformation. The elastomeric nature of the material makes the transformation of the band gaps a reversible and repeatable process, ...

متن کامل

Instability induced control of wave propagation in structured composites

The microstructure of a composite material has an essential infl uence on its effective properties, and it can be used to regulate mechanical, chemical, acoustic, adhesive, thermal, electrical, and optical functions of the material. This research focused on purposely deploying the mechanics of instabilities to achieve sudden pattern transformations in the microstructure of a composite, and stud...

متن کامل

Pattern Switching in Soft Cellular Structures and Hydrogel-Elastomer Composite Materials under Compression

It is well known that elastic instabilities induce pattern transformations when a soft cellular structure is compressed beyond critical limits. The nonlinear phenomena of pattern transformations make them a prime candidate for controlling macroscopic or microscopic deformation and auxetic properties of the material. In this present work, the novel mechanical properties of soft cellular structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008